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We present both intuitive and formal justification for the common assumption that the forward and reverse
rate coefficients for bimolecular reactions proceeding through a collision complex are related by the equilibrium
constant for reactants and products, regardless of the effects of third-body collisional relaxation of the
intermediate.

I. Introduction

One of the most basic equations in chemical thermodynamics
relates the rate coefficients for the forward and reverse directions
of a reaction

via the equilibrium constant

whereQi is the partition function for speciesi, ∆H° is the
enthalpy change for the reaction at 0 K (i.e., the difference
between the zero-point energies of products and reactants), and
the other symbols take their usual meanings. Ab initio estimates
of reaction enthalpies, even at a high level of theory, are rarely

reliable to within 2 kcal mol-1 for open shell systems. Partition
functions can generally be accurately computed either from
spectroscopic or ab initio data, however, so that if the equilib-
rium constant is known, a more precise estimation of the reaction
enthalpy can be made. Experimental measurement of forward
and reverse rate coefficients is an important route to the
determination of equilibrium constants, since the residence time
in flow reactors is often considerably shorter than that which
would be required for equilibrium to be attained, so that it is
much easier to measure the forward and reverse kinetics than it
is to achieve the equilibrium measurement. In this manner,
databases of experimentally measured rate coefficients enable
estimation and cross-validation of heats of formation of
individual chemical species, crucial data for the estimation of
abundances in atmospheric1 or interstellar environments.2

This picture is not quite so straightforward in the case where
the reaction proceeds via a collision complex, in which case
the finite lifetime of the complex introduces the possibility of
collisions with surrounding bath gases prior to dissociation and
hence possible stabilization of the complex. If the well isX Abstract published inAdVance ACS Abstracts,September 15, 1997.
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shallow, then the lifetime of the complex is very short and so
there is no problem since collisions do not interfere on this time
scale. On the other hand, if the well is deep, then stabilization
of the complex represents an additional pathway for the reaction.
Further complications arise when there are other possible
dissociation pathways for the complex, leading to different sets
of products. The qualitative effect of pressure on such systems
is well understood in terms of the classic falloff behavior of
multichannel unimolecular reactions (although quantitative
modeling remains a demanding and important challenge). This
may be summarized as follows: (1) at high pressures, an
effective Boltzmann population distribution of the collision
complex is maintained and stabilization dominates; (2) at low
pressures collisions do not interfere with the forward and reverse
reaction processes; (3) at intermediate pressures there is
competition between collisional relaxation and dissociation,
producing a nonequilibrium population distribution of the
collision complex as a function of energy and angular momen-
tum and leading to branching ratios that are very difficult to
model quantitatively.
The question that we address in this Letter is whether

measurements of forward and reverse rate coefficients for
bimolecular reactions proceeding through a collision complex
can still be used in the manner summarized above to infer
equilibrium constants and hence enthalpies of reaction, regard-
less of the effect of collisions in modifying the population
distribution of the collision complex in a way that depends on
pressure. As we shall see below, there are strong intuitive
grounds for suggesting that the simple relationship of eq 1 above
should be valid independent of pressure. However, to the best
of our knowledge it has never been proven through a master
equation analysis that the nonequilibrium forward and reverse
rate coefficients are indeed exactly related as in eq 1. As shown
below, a careful examination of the formal solution of the master
equation shows that eq 1 does indeed hold for a very wide range
of conditions.
We begin with a simplegedankenexperiment that provides

a strong intuitive argument for the validity of the eq 1,
independent of pressure. Consider a reversible bimolecular
system proceeding through a collision complex

and assume that, as indicated, the system has equilibrated
initially at very low pressures, such that forward and reverse
bimolecular rate coefficients are related exactly by the equilib-
rium constant. We also know that for an equilibrated system
at high pressures the same relationship must hold, the difference
being that in the latter case the stable energy levels of the
molecular species AB are fully populated, whereas in the former
case only the metastable levels of the collision complex above
the lowest dissociation threshold of the molecule are populated.
Now gradually increase the pressure so that collisions between
bath gases and the metastable collision complexes begin to
induce the formation of stable molecular species AB. Does the
formation of the stable species AB with increasing pressure
disturb the equilibrium ratio of species{A,B} and{C,D}? One
does not expect so, since in the long-time limit, when equilib-
rium of the molecular species AB with respect to separated
fragments is attained, the population ratios of{A,B} and{C,D}
are still given by the equilibrium constant. Hence, one expects
on intuitive grounds that, whatever the actual values of the
forward and reverse bimolecular rate coefficients in the presence
of stabilization, they should still be related by the equilibrium
constant. Indeed, if the equilibrium ratio of{A,B} and{C,D}
were to be disturbed, this would appear to violate the second
law of thermodynamics.

The argument based on the hypothetical experiment above
is strongly suggestive; however, the initial conditions envisaged
are not the same as those that usually apply. Hence, we proceed
now to consider the master equation for a bimolecular reaction
proceeding through a collision complex where initially there
are only reactants present, i.e., no intermediate species or
products. The reactants are assumed to be dilute in a bath gas,
as is generally the case (by design) in experimental measure-
ments of this sort. To allow for some more generality, we shall
consider a three-channel system (i.e., reactants and two bimo-
lecular product channels) We make the usual assumptions of

a statistical collision complex with a reasonably high density
of states, so that the standard master equation description is
appropriate for the kinetics (see, e.g., ref 3). The evolution of
the population distribution,g(E,J), of the molecular species AB
(including the levels of the collision complex) over energiesE
and angular momentaJ is then given by

where [M] is the concentration of the bath gas M,R(E,J;E′,J′)
is the bimolecular rate coefficient for energy and angular
momentum transfer from initial values (E′,J′) to final values
(E,J) during collisions with the bath gas,k(E,J) )
∑i)1
3 ki(E,J) is the sum of the microcanonical dissociation rate

coefficients for each of the channels (reactants and two product
channels), andfA,B(E - ∆H°1,J) is the normalized thermal
equilibrium population of reactants. The reactant channel is
denoted as channel 1, andk-1(E - ∆H°1,J) is the microcanoni-
cal capture rate coefficient, related tok1(E,J) by detailed balance.
[A( t)] and [B(t)] are the time-dependent concentrations of
reactants A and B, respectively. Note that eq 2 describes the
irreversible kinetics that occur when the concentration of
products is small and hence formation of complex by recom-
bination of “products” C+ D or E + F may be neglected, as
is the usual situation in flow reactors.

II. Strong Collision Approximation

The solution of the master equation for the (generally
oversimplified) case where stabilization of the complex by
collisions with the surrounding bath gas is assumed to be
irreversible and to occur at the collision rate (i.e., the strong
collision assumption) is well-known (e.g., ref 4). Inspection
reveals that the forward and reverse bimolecular rate coefficients
resulting from this simple approximation do obey the relation
of eq 1. For this case, the steady-state solution for the collision
complex population distribution,g*(E,J), is given by

whereKeq(A,B|AB) is the equilibrium constant for the molecule
AB relative to reactants A and B,
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f(E,J) ) F(E,J) exp(-E/kBT)/Q is the equilibrium population
of AB, W1(E,J) is the sum of states evaluated at the transition
state for the entrance channel (i.e., that which governs the
capture flux), andω is the frequency of collisions with the bath
gas. Hence, the forward bimolecular rate coefficient for
formation of products C and D is

The reverse rate coefficient,kr, for formation of products A
and B from reactants C and D is given similarly by

hence the ratiokf/kr follows directly as in eq 1.

III. General Case: Time-Independent Rate Coefficients

It remains to verify by examination of the formal solution of
the master equation that relationship 1 holds more generally,
i.e., when irreversible stabilization of the complex by a single
collision with a bath gas molecule is not assumed. It is useful
to write the discretized version of eq 2 in matrix form as

whereri ) k1(E,J) F(E,J) exp(-E/kBT), andKeq is to be read as
Keq(A,B|AB) here and below unless otherwise indicated. For
notational convenience, when referring to the elements of vectors
or matrixes we use a single indexi to refer to the (discretized)
energy and angular momentum (E,J). In eq 7, g is the
population vector whose elements are theg(E,J) of eq 2; the
matrixJ contains all of the collisional transition ratesR(E,J;E′,J′)
and the microcanonical dissociation rate coefficientsk(E,J) of
eq 2, and the term involvingr describes the influx terms of eq
2. Because the collisional transition probabilities contained in
J must satisfy the detailed balance requirement, the matrix is
related to a real symmetric matrixB by the transformation5

where the diagonal matrixShas elementsSii ) δij [F(E,J) exp-
(-E/kBT)]1/2. The solution to this “chemical activation” master
equation has been examined in somewhat different ways by
Schranz and Nordholm,6 by Troe,7 and by Smith et al.8 The
general solution to eq 7 has the following form

whereg(t)0) will be 0 if there are no AB molecules present at
the start of the reaction (typically, calculations are carried out
with the real symmetric matrixB rather thanJ itself). In their
study, Smith et al.8 showed that for the case of a reasonably
deep potential well and not-too-high temperatures (i.e., condi-
tions where a time-independent stabilization rate coefficient is
well-defined), there exists a clear separation between the lowest
eigenvalue of the matrixJ and its higher eigenvalues and the
population distribution of eq 9 splits into two terms. One of
these terms (g*) is directly proportional to [A(t)][B( t)] and may

be identified as the steady-state population distribution of the
collision complex, and the other (gs) rises slowly with time and
may be associated with the build-up of population of the
stabilized molecule. Thus

where

and

In eq 10,bi ) F(E,J) exp(-E/kBT), x1 is the eigenvector ofJ
corresponding to the eigenvalue of smallest absolute magnitude,
-kuni, which gives the total thermal unimolecular dissociation
rate coefficient for fragmentation throughall channels, and
kuni
1 is the thermal unimolecular dissociation rate coefficient for
formation of A and B. Finally,η ) -J-1r is the steady-state
population distribution corresponding to long times where there
would be no net stabilization. Analysis of the stabilized
populationgs(t) leads to the result8 that the stabilization rate
coefficient is given by

with The fraction fne is found in practice to be unity for all

except very high temperatures or weakly bound species, i.e.,
the usual conditions under which the eigenvalue separation
mentioned above is valid. Examination of the steady-state
complex populationg* yielded the following result for the
forward bimolecular rate coefficient (from channel 1 to channel
j)

wherekss
1fj is the steady-state bimolecular rate coefficient (i.e.,

that which obtains when there is no longer any net stabilization).
Likewise, the reverse rate coefficientfromchannelj to channel
1 will be given as
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Clearly, the second terms in eqs 13 and 14 will give the simple
ratio of equilibrium constants that we are seeking to establish.
It is necessary therefore to examine the expression for the
steady-state rate coefficients (the first terms) more closely. For
this purpose, we note thatkss

1fj can be written using the
following matrix notation

where k i is a column vector containing the microcanonical
dissociation rate coefficientski(E,J), and we have used the fact
thatr ) S2k1. Substituting forJ in terms of the real symmetric
matrix B, we then have

The reverse steady-state rate coefficient,kss
jf1, is likewise given

by

The terms in the square brackets of eqs 16 and 17 are identical,
however, sinceB, B-1, and hence the matrixSB-1S are real
symmetric. Hence the ratio of forward and reverse steady-state
bimolecular rate coefficients also follows the simple relationship
of eq 1, which completes the proof.

IV. General Case: Time-Dependent Rate Coefficients

In the above arguments, we have dealt with the commonly
encountered case of a suitably deep potential well and temper-
atures that are not too high. Under these conditions there is a
clear separation of the lowest eigenvalue of the matrixJ from
the rest of its spectrum so that one has well-defined, time-
independent rate coefficients for both stabilization and formation
of bimolecular products. The relative size of these will depend
strongly on pressure: at high pressures stabilization dominates,
whereas at low pressures the formation of bimolecular products
will dominate (either way, if the well is deep it may take a
very long time for eventual equilibrium to be achieved). When
these conditions do not apply, however, the separation of the
lowest eigenvalue from the rest of the spectrum ofJ will not
be so pronounced, leading to more complex, time-dependent
kinetics. Examination of the more general time-dependent
solution in eq 9 shows, however, that the simple relation of eq
1 still holds (although the experimental interpretation of the
time-dependent kinetics might be more problematic). To see
this, we substitute forJ in terms of the real symmetricB in eq
9 and explicitly assume that at zero time the population of the
molecular species is zero

Expanding the exponential operator as a polynomial series, one
notes thatJn ) (SBS-1)n ) SBnS-1, and hence the matrixesS
andS-1 can be factored out on either side of the exponential,
yielding

where we have again used the fact thatr ) S2k1. Writing the
forward flux asR1fj(t), we have

The reverse fluxR jf1(t) follows immediately as Provided the

populations of C and D in the reverse reaction are set up
appropriately to match those of A and B in the forward reaction,
the integrals of eqs 20 and 21 will be identical because the
matrixSeB(t-s)S is real symmetric. Hence the ratio of the time-
dependent fluxes for the forward and reverse reactions still obeys
eq 1 even in the case of a shallow well and/or high temperatures,
where time-independent rate coefficients may not be well-
defined.
The above discussion provides both intuitive and formal

justification for the common practice of assuming that the
forward and reverse bimolecular rate coefficients in collision-
complex-forming reactions are related by the equilibrium
constant of reactants and products in order to infer thermody-
namic data from experimental measurements. We have shown
this to be so (1) regardless of the pressure, (2) regardless of the
presence of additional product channels, and (3) even under non-
steady-state conditions. The generalization of the proof to
multiple-well problems is transparent and hence will not be dealt
with here.
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